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Background Methods Results Discussion

Bulk RNA-seq vs. Single-cell RNA-seq
• bulk RNA-seq: average gene expression

⇒ Mask signal coming from individual cells, ignoring tissue heterogeneity

• single-cell RNA-seq: individual gene expression from
hundreds/thousands cells
⇒ Study biological processes that can only be observed at the cell level

[Source: 10xgenomics.com]
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New biological questions

This “new” technology allows to:

• detect different cell types

• characterize cellular heterogeneity

• perform cell maturation trajectory

• . . .
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Associated statistical challenges
Many methodological challenges arise . . . [Lähneman et al. Genome Biology, 2020]

Differential Expression Analysis (DEA) from scRNA-seq data:
1 Distribution of gene expression across cells

◦ Sparsity: large number of zeros (“dropouts”)
⇒ Tiny amount of RNAs & low capture efficiency in a cell

◦ Heterogeneity: multimodal and heterogeneous patterns
⇒ Different cell types, mRNA contents, cell states . . .

2 Complex differential patterns
◦ difference in mode, in proportion, in both . . .

3 (in)dependent multiple-sample analysis
◦ hierarchical observation levels

⇒ need for a new flexible method
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State-of-the-art in DEA methods for scRNA-seq
• Parametric methods

◦ scDD – Dirichlet process Gaussian mixture model + Bayes Factor
[Korthauer et al., 2016]

◦ MAST – 2 part glm [Finak et al., 2015]

◦ SCDE – Bayesian mixture of Poisson & NB [Kharchenko et al., 2014]

◦ DEsingle – ZINB + LRT [Miao et al., 2018]

• Non-parametric methods
◦ EMDomics – Wassertein distance [Nabavi et al., 2016]

◦ SigEMD – Wassertein distance + imputation [Wang & Nabavi, 2018]

◦ D3E – Cramer-von Mises / Kolmogorov-Smirnov / Anderson-Darling test
[Delmans & Hemberg, 2016]

◦ scDD – Kolmogorov-Smirnov [Korthauer et al., 2016]

◦ distinct – cdf comparison, requires biological replicates [Tiberi et al., 2020]

Limitations
• strong distributional assumptions
• 2–group comparisons only
• no covariate adjustment (except MAST & distinct)
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Conditional independence test

DEA & Conditional independence test

Z

X
?

Y

Conditional dependence graph [Li et al. 2020]

Complex designs

• Y : scRNA-seq expression

• X : variable of interest (multi-dimensional, continuous and/or discrete)

• Z: covariates (multi-dimensional, continuous and/or discrete)
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Conditional independence test

Using the cdf for DEA

DEA: Does the gene expression Y differs according to a (group of) factor(s) X ?

H0 : Y ⊥ X

If a group of factors X is associated with the gene expression Y

⇒ conditional cdf of Y would be significantly 6= from the marginal cdf:

H0 : FY |X (y,x) = FY (y)
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Conditional independence test

Using the cdf for DEA

DEA: Does the gene expression Y differs according to a (group of) factor(s) X ,
given Z ?

H0 : Y ⊥ X | Z

If a group of factors X is associated with the gene expression Y , given Z

⇒ conditional cdf of Y would be significantly 6= from the marginal cdf:

H0 : FY |X ,Z (y,x,z) = FY |Z (y,z)
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Conditional independence test

Estimating the empirical CDF with linear regressions

The conditional CDF of Y given X and Z is:

FY |X ,Z (y | x,z) =P(Y ≤ y | X = x,Z = z) = E(1{Y≤y} | X = x,Z = z)

For a given gene g and for a sequence of p ordered thresholds ω1, . . . ,ωp:

E
(
1{yi≤ωj}|X = xi,Z = zi

)
=β0j +β1jxi +β2jzi, ∀i = 1, ...,n
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Conditional independence test

Estimating empirical CDFs with multiple linear regressions

CDF estimation with p linear regressions:

(x1,y1) (x2,y2) ... (xn,yn)

↓
ω1

↓
(x1,1) (x2,0) ... (xn,0)

(x1,y1) (x2,y2) ... (xn,yn)

↓
ωp

↓
(x1,1) (x2,1) ... (xn,1)
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Conditional independence test

Asymptotic test

H0 :β1j = 0, j = 1, ...,p

β1j: coefficient for X in the CDF estimating regression in ωj

Consider the following test statistic:

Dn = n
p∑

j=1
β2

1j

It converges to a mixture of χ2:

D̂n −→
n→+∞

p∑
j=1

âjχ
2
1

⇒ Benjamini-Hochberg correction for multiple testing
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Permutation test

Permutation test

Under H0, observations of X are exchangeable for a given Y

1 No covariates Z

B random permutations ⇒ B test statistics: D = {D∗
1 , ...,D∗

B} ∼ H0

⇒ p-value estimate:
1

1+B

(
1+∑B

b=11
{

D̂≤D∗
b

}) [Phipson & Smyth, 2010]

2 With covariates Z

xi exchangeable conditional on Z
• Z discrete: stratification
• Z continuous: conditional on distances between observations of Z

‘
⇒ Benjamini-Hochberg correction for multiple testing
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Permutation test

Practical considerations for computational speed up

• Adaptive permutations

1 Start by a small number of permutations (e.g. 100)

2 Increase the number of permutations (e.g. to 250) only for genes
with low p-values (e.g. < 0.1) for which additional numerical
precision is needed

3 Repeat step 2 with decreasing p-value threshold (e.g. 0.05 and then
0.01) to reach large number of permutations only for a limited
number of genes

• Spaced thresholds
⇒ as many ωj possible as unique values yi

less thresholds: speed vs numerical precision

• OLS
⇒ estimations of β̂1js
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Results
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Numerical study

2 group comparison benchmark with state-of-the-art

[source: Korthauer et al. (2016)]
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Numerical study

The two conditions case
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Numerical study

The two conditions case – DE genes breakdown

●

●

● ● ● ● ●

●

●

●

●
● ● ●

● ● ●

●

●

● ●

● ● ●

●

●

●
●

DE DM DP DB

2 conditions

20 40 60 80 100 160 200 20 40 60 80 100 160 200 20 40 60 80 100 160 200 20 40 60 80 100 160 200

0.00

0.25

0.50

0.75

1.00

Sample size

Tr
ue

 p
os

iti
ve

 r
at

e 
of

 e
ac

h 
sc

en
ar

io

Method
● CCDF_asymp

CCDF_perm
SigEMD
scDD
MAST

Monte−Carlo estimation over 500 simulations

SMPGD 2021 B. Hejblum

18/28



Background Methods Results Discussion

Numerical study

Multiple comparisons: 4 conditions
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Numerical study

Multiple comparisons: 4 conditions – DE genes breakdown
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Numerical study

Two conditions comparison given a confounding covariate Z
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Real data Benchmark

Positive control real dataset
Islam et al. (2011) dataset: 22,928 genes from 48 mouse embryonic stem
cells and 44 mouse embryonic fibroblasts

⇒ Positive control dataset
⇒ Use of the already-published top 1,000 DE genes validated through
qRT-PCR experiments as a gold standard DE gene set

Positive control real data with FDR of 0.05

Method Number of detected DE genes True Positive Rate

CCDF 7,345 0.696

SigEMD† 3,702 0.488
scDD† 2,638 0.351
MAST† 734 0.198

† results from Wang et al. (2019)
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Real data Benchmark

Negative control real dataset

Grün et al.(2014) dataset: 12,535 genes for 80 pool-and-split samples
obtained under the same condition

⇒ Negative control data
⇒ Random sampling from the 80 sample to get 10 datasets
⇒ There should be no DE genes

Negative control real data with FDR of 0.05

Method Number of detected DE genes False Positive Rate

CCDF 0 0
scDD† 5 0.0007
MAST† 0 0
SigEMD† 50 0.007

† results from Wang et al. (2019)
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Application

Motivation: dendritic cells sub-populations characterization

11,985 genes measured for 2,914 single cells across 4 cell populations

Sub-population number of cells
DC1 479
DC2 & DC3 1,526
pDC 297
preDC 612
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Application

Motivational data-set analysis results

• Which genes are significantly different according to DC
sub-populations ?
⇒ 4651 DE genes

• Which genes are significantly associated with one specific biomarker
gene expression, adjusted on DC sub-populations ?
⇒ 191 DE genes

• Which genes are significantly associated with one specific biomarker
gene expression, when DC sub-populations are pooled ?
⇒ 619 DE genes
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Discussion
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Conclusion
Key features

• Competitive statistical power + unique capabilities

• Distribution-free

• Multiple comparisons, complex designs

• Estimate conditional eCDF with multiple regressions

• Asymptotic & permutation tests

• package ccdf available on [https://github.com/Mgauth/ccdf]

• distinct philosophical proximity

Limits

• Computational burden (currently ∼a few minutes)

• Numerical approximations (OLS, ωjs, permutations, χ2
1 mixture

coefficients. . . )
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Future work

• Complete the benchmark with all applicable state-of-the-art
methods

• Motivational study results biological interpretation

• Multi-sample extension

• Speed-up code

• Perturbations rather than permutations
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Thank you for your attention ! – Questions ?

PhD & postdoc are welcomed !
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Véronique Godot
Rodolphe Thiébaut

Denis Agniel
Marine Gauthier

! boris.hejblum@u-bordeaux.fr
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Two conditions comparison given a confounding covariate Z

Confounding variable Z ∼ N(10,5) with:

X =
{

1, Z ≤ Q1 and Q2 ≤ Z ≤ Q3

2, otherwise
Y =

{
A∗X +ε1, DE gene
0.3∗Z +ε2, non-DE gene

where Qp is the pth quartile of Z, A ∼ N(5,1), ε1 ∼ N(0,1), and ε2 ∼ N(0,1)
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Multiple comparisons: 4 conditions – data generation details

• multiple DE: unimodal distributions and single component with a different
mean in each condition

• multiple DP: bimodal distributions and two components in each condition
with equal component means across conditions. The proportion in the first
mode is 0.2 for condition 1, 0.4 for condition 2, 0.8 for condition 3, 0.6 for
condition 4

• multiple DM:
• distribution with 1 mode for condition 1
• distribution with 2 modes for condition 2
• distribution with 3 modes for condition 3
• distribution with 4 modes for condition 4

with respectively one, two and three overlapping component(s). Cells
belonging to each mode are uniformly distributed.

• multiple DB:
• distribution with 1 mode for condition 1
• distribution with 2 modes for condition 2
• distribution with 3 modes for condition 3
• distribution with 4 modes for condition 4

The means in condition 2, 3 and 4 are equal to the mean in condition 2.
Cells belonging to each mode are uniformly distributed.
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